Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

A. K. Bauri,^a Sabine Foro,^b Hans J. Lindner^b and S. K. Nayak^c*

^aBioorganic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India, ^bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany, and ^cBio-organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Correspondence e-mail: sknayak@magnum.barc.ernet.in

Key indicators

Single-crystal X-ray study $T=299~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.046 wR factor = 0.143 Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Malabaricone A isolated from a methanol extract of *Myristica malabarica*

The title compound, malabaricone A [systematic name: 1-(2,6-dihydroxyphenyl)-9-phenylnonan-1-one], $C_{21}H_{26}O_3$, contains two benzene rings linked through a C_9 alkyl chain. Both intra-and intermolecular $O-H\cdots O$ hydrogen-bonding interactions stabilize the packing. The intermolecular hydrogen bonds result in the formation of an infinite zigzag chain.

Received 13 December 2005 Accepted 6 March 2006

Comment

The fruit rind of *M. malabarica*, popularly known as Rampatri in Mumbai (India), is used as an exotic spice in various Indian cuisines, as well as in phytomedicine (Forrest & Heacock, 1972, and references therein). It is credited with hepatoprotective, anticarcinogenic and antithrombotic properties and is found as a constituent in many ayurvedic preparations such as Pasupasi.

Previous phytochemical investigations of *M. malabarica* fruit rinds revealed the presence of four novel diarylnonanoids, named as malabaricone A–D (Purushothaman *et al.*, 1977). In addition, a lignan malabericanol A and an isoflavone were also isolated from the heart wood of the plant (Purushathaman *et al.*, 1974; Talukdar *et al.*, 2000). During our studies on the antioxidant activity of methanol extracts of *M. malabarica* fruit rinds, we have isolated malabaricone A as a minor product. The compound was assayed against breast and colon cancer cells and the result found to be quite promising (Patro *et al.*, 2005).

The 2,6-dihydroxyphenyl and benzene rings are linked through a C_9 alkyl chain (Fig. 1). Intramolecular $O-H\cdots O$ hydrogen bonding results in the formation of a six-membered ring, while intermolecular $O-H\cdots O$ hydren bonding results in the formation of zigzag chains parallel to the c axis (Fig. 2). Details of the hydrogen bonding are given in Table 1.

Experimental

The title compound was isolated as a minor product from a methanol extract of *M. malabarica* by column chromatography over silica gel with gradient elution by changing the polarity of the ethyl acetate–hexane solvent system. Crystals suitable for X-ray data collection were obtained by recrystallzation from hexane–benzene (4:1) at room temperature by evaporation.

© 2006 International Union of Crystallography All rights reserved

Crystal data

$C_{21}H_{26}O_3$	$D_x = 1.181 \text{ Mg m}^{-3}$		
$M_r = 326.47$	Cu $K\alpha$ radiation		
Monoclinic, $P2_1/n$	Cell parameters from 25		
a = 4.1831 (6) Å	reflections		
b = 32.562 (2) Å	$\theta = 8.2 - 23.9^{\circ}$		
c = 13.6270 (10) Å	$\mu = 0.61 \text{ mm}^{-1}$		
$\beta = 98.430 \ (10)^{\circ}$	T = 299 (2) K		
$V = 1836.1 (3) \text{ Å}^3$	Prism, yellow		
Z = 4	$0.65 \times 0.18 \times 0.10 \text{ mm}$		

Data collection

Enraf-Nonius CAD-4	$\theta_{\rm max} = 67.1^{\circ}$
diffractometer	$h = -4 \rightarrow 4$
$\omega/2\theta$ scans	$k = -38 \rightarrow 0$
Absorption correction: none	$l = -16 \rightarrow 16$
6403 measured reflections	3 standard reflections
3251 independent reflections	frequency: 120 min
2092 reflections with $I > 2\sigma(I)$	intensity decay: 3.4%
$R_{\rm int} = 0.044$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.075P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.1143P
$wR(F^2) = 0.143$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.004$
3251 reflections	$\Delta \rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$
296 parameters	$\Delta \rho_{\min} = -0.14 \text{ e Å}^{-3}$
Only H-atom coordinates refined	Extinction correction: SHELXL97
	Extinction coefficient: 0.0029 (5)

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$O1-H1O\cdots O3$	0.92 (2)	1.62 (2)	2.4681 (19)	151 (2)
$O2-H2O\cdots O1^{i}$	0.88 (2)	1.89 (2)	2.7419 (18)	164 (2)

Symmetry code: (i) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

The H atoms were located in a difference map and were refined with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm parent\ atom})$.

Data collection: *CAD-4/PC Software* (Enraf–Nonius, 1993); cell refinement: *CAD-4/PC Software*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material- und Geowissenschaften, Technische Universitat Darmstadt, Germany, for diffractometer time.

References

Enraf-Nonius (1993). CAD-4/PC Software. Version 2.0. Enraf-Nonius GmbH, Solingen, Germany.

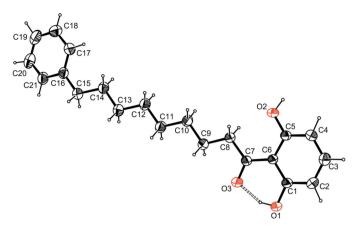


Figure 1

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probablity level. The dashed line indicates a hydrogen bond.

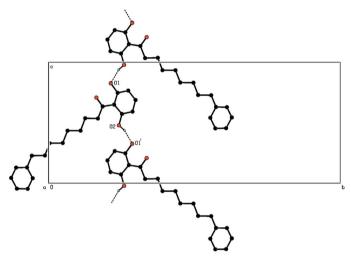


Figure 2

Part of the packing of the title compound showing the intermolecular O— $H \cdot \cdot \cdot O$ hydrogen bonds as dashed lines. [Symmetry code: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$.]

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440-449.

Patro, B. S., Bauri, A. K., Mishra Shilpa & Chattopadhyay, S. (2005). J. Agric. Food. Chem. 53, 6912–6918.

Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1974). *Indian J. Chem. Sect B*, 23, pp. 46–48.

Purushathaman, K. K., Sarada, A. & Connolly, J. D. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 587–588.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Talukdar, A. C., Jain, N., De, S. & Krishnamurthy, H. G. (2000). Phytochemistry, 53, 155–157.